Сверхновая звезда. Что такое сверхновые звезды? Почему взрываются сверхновые звезды

Взрыв сверхновой

Сверхновые звезды

Обратимся теперь к явлению сверхновой звезды - одному из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв зведы, когда большая часть ее массы (или даже вся) сбрасывается со скоростью до 10 тысяч км/с в пространство, а оставшаяся центральная часть схлопывается (коллапсирует) в сверхплотную нейтронную звезду или даже в черную дыру. Сверхновые играют фундаментальную роль в эволюци звезд, являясь "финалом" жизни звезд с массами более 8-10 солнечных масс, рождая нейтронные звезды и черные дыры и обогащая межзвездную среду тяжелыми химическими элементами (практически все химические элементы тяжелее кислорода когда-то образовались при взрыве какой-нибудь массивной звезды.

Не в этом ли разгадка извечной тяги человечества к звездам? Ведь в мельчайшей кровинке живой материи есть атомы железа, каждый из которых был синтезирован при гибели массивной звезды, и в этом смысле люди сродни тому снеговику из сказки Г.-Х. Андерсена, который испытывал необъяснимую любовь к жаркой печке, потому что основой его была кочерга...). По своим наблюдаемым характеристикам сверхновые принято разделять на 2 широких класса - сверхновые 1го и 2-го типа .

В спетрах сверхновых 1-го типа нет линий водорода, зависимость их блеска от времени (т.н. кривая блеска) почти не меняется от сверхновой к сверхновой, светимость в максимуме блеска примерно одинакова. Сверхновые 2-го типа , напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весма разнообразны, блеск в максимуме сильно различается у разных сверхновых. Чтобы дополнить картину различий между этими типами сверхновых укажем, что только сверхновые 1-го типа вспыхивают в эллиптических галактиках (т.е. галактиках без спиральной структуры с пониженным темпом звездообразования, основной состав которых - маломассивные красные звезды), в то время как в спиральных галактиках (к числу которых принадлежит и наша галактика Млечный Путь) встречаются оба типа сверхновых, причем установлено, что сверхновые 2-го типа концентрируются к спиральным рукавам галактик, где идет активный процесс звездообразования и много молодых массивных звезд.

Эти феноменологические особенности наводят на мысль о различной природе двух типов сверхновых. Сейчас надежно установлено, что при взрыве любой сверхновой освобождается всегда примерно одно и то же (гигантское!) количество энергии 10 53 эрг, что соответствует энергии связи образующегося компактного остатка (напомним, чтоэнергия связи звезды соответствует такому количеству энергии, которое нужно затратить, чтобы "распылить" вещество звезды на бесконечно удаленное расстояние). Основная энергия взрыва уносится не фотонами, а нейтрино - релятивисткой частицей с очень малой массой или вообще безмассовой (этот вопрос активно исследуется последние 10-20 лет на самых мощных ускорителях элементарных частиц), так как большая плотность звездных недр не позволяет фотонам свободно покидать звезду, а нейтрино чрезвычайно слабо взаимодействуют с веществом (как говорят, имеют очень малое сечение взаимодействия) и для них недра звезды вполне "прозрачны".

Окончательной самосогласванной теории взрыва сверхновых с образованием компактного остатка и сбросом внешней оболочки не существует ввиду крайней сложности учета всех физических процессов, происходящих при вспышке сверхновой. Однако все данные говорят о том, что сверхновые 2-го типа являются следствием коллапса ядра звезды, в котором происходило термоядерное горение сначала водорода в гелий, затем гелия в углерод и так далее до образования изотопов элементов "железного пика" - железа, кобальта и никеля, атомные ядра которых имеют максимальную энергию связи в расчете на одну частицу (ясно, что присоединение новых частиц к ядру, например, железа, будет требовать затрат энергии, а потому термоядерное горение и "останавливается" на элементах железного пика).

Что же заставляет центральные части массивной звезды терять устойчивость и коллапсировать как только железное ядро станет достаточно массивным (около 1.5 масс Солнца)?
В настоящее время известны два основных фактора, приводящие к коллапсу.
Во-первых, это "развал" ядер железа на 13 альфа-частиц (ядер гелия) с выделением фотонов (т.н. фотодиссоциация железа), и
во-вторых , захват электронов протонами с образованием нейтронов (т.н. нейтронизация вещества).
Оба процесса становятся возможными при больших плотностях (свыше 1 тонны в куб. см), устанавливающихся в центре звездных недр в конце эволюции, и оба они эффективно снижают "упругость" вещества, которая фактически и противостоит сдавливающему действию сил притяжения. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящее основную энергию, запасенную в коллапсирующем ядре. В отличие от процесса катастрофического коллапса ядра, разработанного достаточно детально, сброс оболочки звезд (собственно взрыв) не так-то просто получить. По-видимому, существенную роль в этом процессе играет нейтрино.

Как показывают расчеты, проведенные на суперкомпьютерах, плотность вблизи ядра настолько высока, что даже слабовзаимодействующее с веществом нейтрино оказывается на какое-то время "запертым" внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру и возникает ситуация, похожая на ту, которая получается при попытке налить более плотную жидкость, например, воду, поверх менее плотной (например, керосина или масла) - из опыта хорошо известно, что легкая жидкость стремится "всплыть" из-под тяжелой (в этом проявляется так называемая неустойчивость Рэлея-Тэйлора). Этот механизм приводит к возникновению гигантских конвективных движений и в конце концов импульс нейтрино передается вышележащей оболочке, которая сбрасывается в окружающее звезду пространство. Интересно отметить, что возможно именно эти нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой (иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество) - и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до тысячи км/с (столь большие пространственные скорости наблюдаются у молодых нейтронных звезд - радиопульсаров). Описанная схематическая картина взрыва сверхновой 2-го типа позволяет объяснить основные наблюдательные особенности этого грандиозного явления. Более того, теоретические предсказания этой модели (особенно касающиеся полной энергии и спектра нейтринной вспышки) оказались в отличном согласии с зарегистрированным нейтринным импульсом, пришедшим 23 февраля 1987 г. от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа . Отсутствие свечения водорода в их спектрах говорит о том, что взрыв произошел в звезде, лишенной водородной оболочки. Как сейчас полагают, это может быть звезда типа Вольфа-Райе (фактически это богатые гелием, углеродом и кислородом ядра звезд, у которых давление света "сдуло" верхнюю водородную оболочку, или же, если такая массивная звезда входила в состав тесной двойной системы, эта оболочка "перетекла" на соседнюю звезду под действием мощных приливных сил), у которой коллапсирует проэволюционировавшее ядро (т.н. сверхновые типа 1b), или взрывающийся белый карлик .

Как может взорваться белый карлик? Ведь это очень плотная звезда, в которой не идут ядерные реакции, а силам гравитации противостоит давление плотного газа, состоящего из электронов и ионов, которое вызвано существенно квантовыми свойствами электронов (т.н. вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звезд - уменьшение упругости вещества звезды при повышении ее плотности. Это опять же связано со "вдавливанием" электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами, которые мы здесь не будем рассматривать.

Как же можно повысить плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды может перетекать на белый карлик (вспомните случай новых звезд!), и при некоторых условиях масса (а значит и плотность) его будет постепенно возрастать, что в конечном счете и приведет к коллапсу и взрыву. Другой возможный вариант более экзотичен, но не менее реален - это столкновение двух белых карликов. Как такое возможно, спросит внимательный читатель, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, т.к. ничтожно число звезд в единице объема (от силы несколько звезд в 100-1000 парсеках). И здесь (в который уж раз!) "виноваты" оказываются двойные звезды, но теперь уже состоящие из двух белых карликов. Не вдаваясь в детали их образования и эволюции, заметим только, что, как следует из общей теории относительности А.Эйнштейна, две любые массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами (например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы из-за этого эффекта, правда через колоссальное время, намного порядков превосходящее возраст Вселенной).

Оказывается, в случае двойных систем с массами звезд около солнечной (2*10 30 кг) их "слияние" должно произойти за время меньшее возраста Вселенной (примерно 10 миллиардов лет).
Как показывают оценки, в типичной галактике такие двойные белые карлики могут сливаться раз в несколько сотен лет. Гигантская энергия, освобождаемая при этом катастрофическом процессе, вполне достаточна для объяснения явления Сверхновой типа 1а. Кстати, примерная одинаковость масс белых карликов делает все такие слияния "похожими" друг на друга, поэтому сверхновые типа 1а по своим характеристикам должны выглядеть одинаково вне зависимости когда и в какой галактике произошло это событие. Это свойство сверхновых типа 1а в настоящее время используется учеными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая является количественной мерой скорости расширения Вселенной.

Мы рассказали лишь о наиболее грандиозных взрывах звезд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Мы отмечали выше, что в случае Сверхновых звезд основная энергия взрыва уносится нейтрино, а не светом, поэтому исследованеи неба методами нейтринной астрономии имеет интереснейшие перспективы и позволит в будущем "заглянуть" в самое "пекло" сверхновой, скрытое огромными толщами непрозрачного для света вещества.
Еще более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалеком будущем расскажет нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звезд и черных дыр.

Экология жизни.Звезда может погибнуть разными способами, но обычно люди думают, что звёзды взрываются.Термин «сверхновая» описывает взрывы с выделением большого количества энергии в момент, когда определённые звёзды достигают определённой стадии развития

Звезда может погибнуть разными способами, но обычно люди думают, что звёзды взрываются.

Термин «сверхновая» описывает взрывы с выделением большого количества энергии в момент, когда определённые звёзды достигают определённой стадии развития. Сверхновые могут сиять ярче целых галактик, и разрушать всё, что находится в сотне световых лет от них. Но сверхновые – не просто удивительное природное явления. Это самые важные явления, необходимый для развития сложной материи и в том числе, жизни.


Поиск сверхновых астрономами

Начнём с того, как возникают сверхновые. Когда в одном месте собирается достаточно газа, его масса начинает оказывать гравитационное действие, сфокусированное в центре облака. Когда давление превосходит определённый предел, атомы водорода в центре сферы начинают претерпевать синтез, зажигающий газ и превращающий его в звезду. Но всё время жизни звезды и её горения существует противодействие между давлением температурной реакции, направленным наружу, и гравитационным сжатием, направленным внутрь.

За миллиарды лет горения действующее наружу давление уменьшается, а гравитационная сила остаётся примерно такой же. Поэтому при остывании малых и средних звёзд гравитация в них начинает выигрывать – но поскольку эти звёзды не очень велики, гравитация не приводит ни к чему другому, кроме как к удержанию материи вместе. Такая безопасно остывшая звезда зовётся белым карликом. Предел массы, который необходим для возникновения сверхновой, называется пределом Чандрасекара, и равен примерно 1,4 массы Солнца. Если звезда меньше, то погаснет она мирно.


Сверхновые настолько ярки, что выделяются даже на фоне галактик

При этом белый карлик ещё может зажечь под конец жизни. В принципе, такие звёзды можно зажечь заново. Она может притянуть к себе достаточно массы, чтобы давление в центре сильно увеличилось, и начался синтез углерода. Тогда начнётся неустойчивая реакция синтеза, которая приведёт к взрыву.

Либо, если ядро белого карлика будет состоять в основном из неона, его ядро сколлапсирует, что также приведёт к взрыву – но только после него останется нейтронная звезда. Почти всегда так происходит в бинарных системах, в которых одна звезда приближается к пределу Чандрасекара, высасывая материю у своего партнёра. Поскольку астрономы не могут исследовать содержимое ядра звезды, они не знают, по какому из двух путей пойдёт её развитие.

У звёзд массивнее, чем 1,4 масс Солнца, жизненный цикл другой. Красный гигант медленно сгорает, при этом его гравитация оказывается достаточно сильной, чтобы вызвать коллапс ядра и взрыв сверхновой. Звёзды массой от 1,4 до 3 солнечных коллапсируют в нейтронные звёзды.

Звёзды тяжелее тоже коллапсируют, но при этом не останавливаются до тех пор, пока не превратятся в чёрную дыру. Это довольно редкое событие. Хотя чёрных дыр во Вселенной достаточно много, их гораздо меньше, чем остальных типов остатков звёзд.

Сверхновые могут появиться и другими путями. К примеру, хотя большинство белых карликов медленно набирают массу, некоторые звёзды могут получить быстрый прирост массы (например, от столкновения с другой звездой) и быстро преодолеть предел Чандрасекара – так быстро, что они не успеют начать коллапсировать.

У сверхновых есть несколько применений для астрономии. Например, сверхновые типа Ia (белый карлик, осуществивший углеродный синтез), шлёт в космос равномерные сигналы. Поэтому их окрестили «стандартными свечками», поскольку они служат учёным эталонами для оптических измерений. Правда, последние исследования говорят о том, что эти свечки не такие уж стандартные, как считалось ранее.

Но речь шла о том, что сверхновые – это не только прикольные и полезные явления. Чтобы породить элементы тяжелее углерода и неона, обычные звёзды не подходят. С этим справятся только сверхновые, умирающие звёзды.

Практически всё, с чем мы имеем дело, в какой-то момент было выброшено звездой в последние моменты её жизни. Земля – каменистый набор останков, выброшенных сверхновой. А также все кометы, астероиды и всё остальное, состоящие из более тяжёлой материи. И мы сами, состоящие из материи, взятой на Земле, созданы из обломков сверхновой. опубликовано

Существует несколько гипотез о причине взрывов звезд, наблюдаемых как сверхновые. Однако общепризнанной теории, основывающейся на известных фактах и могущей предсказать новые явления, пока нет. Можно, однако, не сомневаться, что такая теория будет создана в самом ближайшем времени. По всей вероятности, причиной взрыва является катастрофически быстрое выделение потенциальной энергии тяготения при «спаде» внутренних слоев звезды к ее центру.

Эволюция звезд

Почему взрываются звезды? Каждая ли звезда взрывается? Что представляют собой осколки взорвавшейся звезды? Что остается после взрыва? На все эти вопросы нельзя ответить, не имея представления о структуре и эволюции звезд. Взрыв - это свидетельство нарушения внутреннего равновесия звезды, и, чтобы понять, почему и когда это нарушение происходит, необходимо, прежде всего, знать, как вообще поддерживается равновесие в звездах.

Собственное гравитационное поле массивных объектов заставляет их сжиматься. И если внутреннее давление недостаточно для того, чтобы воспрепятствовать сжатию, то массивные объекты коллапсируют. Тот факт, что Солнце сохраняет неизменными свои размеры, свидетельствует о существовании внутри его сильного давления.

Согласно современным представлениям, звезды образуются при сжатии межзвездного газово-пылевого облака. По мере сжатия облако постепенно дробится на множество мелких частей. Каждая часть продолжает сжиматься дальше и при этом нагревается, особенно в середине. Эту раннюю стадию жизни звезд исследовал японский астроном Ч. Хаяши. Когда температура в центре звезды становится достаточно высокой, начинаются реакции термоядерного синтеза - звезда, как говорится, вступает в пору своей зрелости.

Тем не менее, существует одна проблема, касающаяся начальной стадии образования звезд. Решение этой проблемы связано со сверхновыми.

Как только звезда начинает «работать» как ядерный реактор, качественная картина ее эволюции сводится вкратце к следующему. Сначала благодаря реакциям ядерного синтеза водород превращается в гелий. В этом процессе высвобождается энергия, которая препятствует сжатию звезды под действием собственного тяготения. Пока реакции ядерного синтеза продолжаются, звезда, как говорят, находится на главной последовательности. Стадия главной последовательности - самая продолжительная в жизни звезды, причем ее длительность зависит от массы звезды. Чем больше масса, тем меньше время пребывания на главной последовательности, т.к. в массивных звездах водород выгорает быстрее.

Когда исчерпаются запасы водорода, особенно в ядре звезды, ядро начинает сжиматься, ибо после прекращения ядерных реакций звезда теряет способность противостоять тяготению. Однако, сжимаясь, ядро разогревается еще больше, и в результате повышения температуры начинается следующий цикл ядерных реакций. В этих реакциях гелий превращается в углерод, затем углерод превращается в кислород и неон. На каждой ступени этой серии реакций образуются все более массивные атомные ядра. Каждое атомное ядро поглощает дополнительно по одному ядру атома гелия, при этом его заряд возрастает на 2, а массовое число на 4. Как только ядра очередного типа превращаются в более массивные ядра следующего типа, синтез прекращается. Это ведет к ослаблению противодействия силам тяготения, которые снова начинают сжимать ядро звезды, еще более повышая его температуру. Когда температура достаточно возрастает, начинаются ядерные реакции следующего цикла. И, пока они продолжаются, дальнейшее сжатие звезды приостанавливается. Эти реакции переводят атомные ядра еще на одну ступеньку выше, добавляя им по одному ядру атома гелия. При достаточно высоких температурах могут сливаться и более массивные ядра. Так и продолжается этот многоступенчатый процесс включения - выключения ядерных реакций.

Вопрос о причинах взрывов сверхновых по-прежнему остаётся предметом дискуссий и служит поводом для выдвижения противоречивых гипотез.

Звезда с массой, превосходящей солнечную примерно на 20%, может со временем стать неустойчивой. Это показал в своём блестящем теоретическом исследовании, сделанном в конце 30-х годов нашего столетия, астроном Чандрасекар. Он установил, что подобные звёзды на склоне жизни порой подвергаются катастрофическим изменениям, в результате чего достигается некоторое равновесное состояние, позволяющее звезде достойно завершить свой жизненный путь. Многие астрономы занимались изучением последних стадий звёздной эволюции и исследованием зависимости эволюции звезды от её массы. Все они пришли к одному выводу: если масса звезды превышает предел Чандрасекара, её ожидают невероятные изменения.

Как мы видели, устойчивость звезды определяется соотношением между силами гравитации, стремящимися сжать звезду, и силами давления, расширяющими её изнутри. Мы также знаем, что на последних стадиях звёздной эволюции, когда истощаются запасы ядерного горючего, это соотношение обеспечивается за счёт эффекта вырождения, которое может привести звезду к стадии белого карлика и позволит ей провести остаток жизни в таком состоянии. Став белым карликом, звезда постепенно остывает и заканчивает свою жизнь, превратившись в холодный, безжизненный, невидимый звёздный шлак.

Если масса звезды превосходит предел Чандрасекара, эффект вырождения уже не в состоянии обеспечить необходимое соотношение давлений. Перед звездой остаётся только один путь для сохранения равновесия - поддерживать высокую температуру. Но для этого требуется внутренний источник энергии. В процессе обычной эволюции звезда постепенно использует для этого ядерное горючее. Однако как может звезда добыть энергию на последних стадиях звёздной эволюции, когда ядерное топливо, регулярно поставляющее энергию, на исходе?

Конечно она ещё не энергетический «банкрот», она большой, массивный объект, значительная часть массы которого находится на большом расстоянии от центра, и у неё в запасе ещё есть гравитационная энергия. Она подобна камню, лежащему на вершине высокой горы, и благодаря своему местоположению обладающему потенциальной энергией. Энергия заключённая во внешних слоях звезды, как бы находится в огромной кладовой, из которой в нужный момент её можно извлечь.

Итак, чтобы поддерживать давление, звезда теперь начинает сжиматься, пополняя таким образом запас своей внутренней энергии. Как долго продолжается это сжатие? Фред Хойл и его коллеги тщательно исследовали подобную ситуацию и пришли к выводу, что в действительности происходит катастрофическое сжатие, за которым следует катастрофический взрыв. Толчком взрыву, избавляющему звезду от избытка массы, является значение плотности, создаваемое при сжатии. Избавившись от избыточной массы, звезда тут же возвращается на путь обычного угасания.

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.